random sample set for regression

Previous Topic Next Topic
 
classic Classic list List threaded Threaded
2 messages Options
Reply | Threaded
Open this post in threaded view
|

random sample set for regression

Francisca R. Souza Pereira
Hi,
I'm not a programmer, so I have a question about R functions,

I run the Random Forest regression models, but
I would like to run the random forest model 1000 times with different
random sample set. to check the uncertainty of the regression model
estimates.

exemple of data:
#################################
table= all
Y: all$AGB
X variables:
Variables=as.matrix(all[, c( "min", "max", "avg", "qav", "std",
                                  "ske", "kur",  "p50",  "d50",  "d06",
"d07", "d08", "dns_gap")])

rf.Model=randomForest(Variables, all$AGB, importance=T)
#################################

Can I use Monte Carlo method or Bootstrap to simulate 1000 different sample
set and Run 1000 x times the Random Forest regression?  But How can I do
that? Could somebody have an idea with the script?
Thanks!
Fran

        [[alternative HTML version deleted]]

______________________________________________
[hidden email] mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
Reply | Threaded
Open this post in threaded view
|

Re: random sample set for regression

Rui Barradas
Hello,

Can you please post the output of

dput(all)   # if all is small
dput(head(all, 30))  # if all is big

in a mail?

Hope this helps,

Rui Barradas

On 1/24/2018 4:28 PM, Francisca R. Souza Pereira wrote:

> Hi,
> I'm not a programmer, so I have a question about R functions,
>
> I run the Random Forest regression models, but
> I would like to run the random forest model 1000 times with different
> random sample set. to check the uncertainty of the regression model
> estimates.
>
> exemple of data:
> #################################
> table= all
> Y: all$AGB
> X variables:
> Variables=as.matrix(all[, c( "min", "max", "avg", "qav", "std",
>                                    "ske", "kur",  "p50",  "d50",  "d06",
> "d07", "d08", "dns_gap")])
>
> rf.Model=randomForest(Variables, all$AGB, importance=T)
> #################################
>
> Can I use Monte Carlo method or Bootstrap to simulate 1000 different sample
> set and Run 1000 x times the Random Forest regression?  But How can I do
> that? Could somebody have an idea with the script?
> Thanks!
> Fran
>
> [[alternative HTML version deleted]]
>
> ______________________________________________
> [hidden email] mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

______________________________________________
[hidden email] mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.