need help on nlme()

Previous Topic Next Topic
 
classic Classic list List threaded Threaded
3 messages Options
Reply | Threaded
Open this post in threaded view
|

need help on nlme()

Mingyu Feng
Hello there,

I am using nlme() to fit a logistic mixed effect model on our data.
The outcome variable is binary.
I got the error when I wanted to add a group factor to my model.

My initial model is as below:

model.a <- nlme(response~ 1/(1 + exp( -intercept- u0 - slope*TIME -
u1*TIME)),
                           + fixed=intercept+slope~1, random= u0+u1~1
|studentID,
                           + start=c(slope=.01, intercept=-1), data=log.data,
method='ML')

This works fine on my data. But when i update it by adding a group factor
SKILLS,
I got the error message:
"Error in nlme.formula(response ~  1/(1 + exp( -intercept- u0 - slope*TIME
:
        starting values for the fixed component are not the correct length"

The model is as below:
model.a <- nlme(response~ 1/(1 + exp( -intercept- u0 - slope*TIME -
u1*TIME)),
                           + fixed=intercept+slope ~ SKILLS, random= u0+u1~1
|studentID,
                           + start=c(slope=.01, intercept=-1), data=log.data,
method='ML')

Does anybody see anything wrong with the "start" part of this model?

Thanks a lot!!

        [[alternative HTML version deleted]]

______________________________________________
[hidden email] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
Reply | Threaded
Open this post in threaded view
|

Re: need help on nlme()

Wincent
I think nlme is not for logistic mixed effect model.
you should use glmmPQL in MASS or lmer in Matrix

2006/2/20, Mingyu Feng <[hidden email]>:

> Hello there,
>
> I am using nlme() to fit a logistic mixed effect model on our data.
> The outcome variable is binary.
> I got the error when I wanted to add a group factor to my model.
>
> My initial model is as below:
>
> model.a <- nlme(response~ 1/(1 + exp( -intercept- u0 - slope*TIME -
> u1*TIME)),
>                            + fixed=intercept+slope~1, random= u0+u1~1
> |studentID,
>                            + start=c(slope=.01, intercept=-1), data=log.data,
> method='ML')
>
> This works fine on my data. But when i update it by adding a group factor
> SKILLS,
> I got the error message:
> "Error in nlme.formula(response ~  1/(1 + exp( -intercept- u0 - slope*TIME
> :
>         starting values for the fixed component are not the correct length"
>
> The model is as below:
> model.a <- nlme(response~ 1/(1 + exp( -intercept- u0 - slope*TIME -
> u1*TIME)),
>                            + fixed=intercept+slope ~ SKILLS, random= u0+u1~1
> |studentID,
>                            + start=c(slope=.01, intercept=-1), data=log.data,
> method='ML')
>
> Does anybody see anything wrong with the "start" part of this model?
>
> Thanks a lot!!
>
>         [[alternative HTML version deleted]]
>
> ______________________________________________
> [hidden email] mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
>

--
黄荣贵
Deparment of Sociology
Fudan University


______________________________________________
[hidden email] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
Reply | Threaded
Open this post in threaded view
|

Re: need help on nlme()

Prof Brian Ripley
On Mon, 20 Feb 2006, ronggui wrote:

> I think nlme is not for logistic mixed effect model.
> you should use glmmPQL in MASS or lmer in Matrix

There are two senses of 'logistic mixed effect model'.  One is for a
continuous response as given by SSlogis, and nlme is appropriate.  The
other is a glm with a binomial (or binary) response, and nlme is
inappropriate.

The issue here is that when the fixed includes an rhs, there are
parameters for intercept and slope for each level of SKILLS, although they
will be coded using contrasts.  So 2 starting values are not enough.

>
> 2006/2/20, Mingyu Feng <[hidden email]>:
>> Hello there,
>>
>> I am using nlme() to fit a logistic mixed effect model on our data.
>> The outcome variable is binary.
>> I got the error when I wanted to add a group factor to my model.
>>
>> My initial model is as below:
>>
>> model.a <- nlme(response~ 1/(1 + exp( -intercept- u0 - slope*TIME -
>> u1*TIME)),
>>                            + fixed=intercept+slope~1, random= u0+u1~1
>> |studentID,
>>                            + start=c(slope=.01, intercept=-1), data=log.data,
>> method='ML')
>>
>> This works fine on my data. But when i update it by adding a group factor
>> SKILLS,
>> I got the error message:
>> "Error in nlme.formula(response ~  1/(1 + exp( -intercept- u0 - slope*TIME
>> :
>>         starting values for the fixed component are not the correct length"
>>
>> The model is as below:
>> model.a <- nlme(response~ 1/(1 + exp( -intercept- u0 - slope*TIME -
>> u1*TIME)),
>>                            + fixed=intercept+slope ~ SKILLS, random= u0+u1~1
>> |studentID,
>>                            + start=c(slope=.01, intercept=-1), data=log.data,
>> method='ML')
>>
>> Does anybody see anything wrong with the "start" part of this model?
>>
>> Thanks a lot!!
>>
>>         [[alternative HTML version deleted]]
>>
>> ______________________________________________
>> [hidden email] mailing list
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html
>>
>
>
> --
> »ÆÈÙ¹ó
> Deparment of Sociology
> Fudan University
>
>
--
Brian D. Ripley,                  [hidden email]
Professor of Applied Statistics,  http://www.stats.ox.ac.uk/~ripley/
University of Oxford,             Tel:  +44 1865 272861 (self)
1 South Parks Road,                     +44 1865 272866 (PA)
Oxford OX1 3TG, UK                Fax:  +44 1865 272595
______________________________________________
[hidden email] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html