# rpois(9, 1e10)

24 messages
12
Open this post in threaded view
|

## rpois(9, 1e10)

 Hello, All:        Consider: Browse[2]> set.seed(1) Browse[2]> rpois(9, 1e10) NAs produced[1] NA NA NA NA NA NA NA NA NA        Should this happen?        I think that for, say, lambda>1e6, rpois should return rnorm(., lambda, sqrt(lambda)).        For my particular Monte Carlo, I have replaced my call to rpois with a call to the following:   rpois. <- function(n, lambda){        n2 <- max(length(n), length(lambda))        n <- rep_len(n, n2)        lambda <- rep_len(lambda, n2) #        big <- (lambda>1e6)        out <- rep(NA, n2)        out[big] <- rnorm(sum(big), lambda[big], sqrt(lambda[big]))        out[!big] <- rpois(sum(!big), lambda[!big])        out    }        Comments?        Thanks,        Spencer Graves ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 > ------------------------------------------------------------------------ > Hello, All: > > >         Consider: > > > Browse[2]> set.seed(1) > Browse[2]> rpois(9, 1e10) > NAs produced[1] NA NA NA NA NA NA NA NA NA > > >         Should this happen? > > >         I think that for, say, lambda>1e6, rpois should return rnorm(., > lambda, sqrt(lambda)). But need to implement carefully; rpois should always return a non-negative integer, whereas rnorm always returns numeric... ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 On 2020-01-19 09:34, Benjamin Tyner wrote: >> ------------------------------------------------------------------------ >> Hello, All: >> >> >>         Consider: >> >> >> Browse[2]> set.seed(1) >> Browse[2]> rpois(9, 1e10) >> NAs produced[1] NA NA NA NA NA NA NA NA NA >> >> >>         Should this happen? >> >> >>         I think that for, say, lambda>1e6, rpois should return rnorm(., >> lambda, sqrt(lambda)). > But need to implement carefully; rpois should always return a > non-negative integer, whereas rnorm always returns numeric... >        Thanks for the reply.        However, I think it's not acceptable to get an NA from a number that cannot be expressed as an integer.  Whenever a randomly generated number would exceed .Machine\$integer.max, the choice is between returning NA or a non-integer numeric.  Consider:  > 2*.Machine\$integer.max [1] 4294967294  > as.integer(2*.Machine\$integer.max) [1] NA Warning message: NAs introduced by coercion to integer range        I'd rather have the non-integer numeric.        Spencer ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 Maybe there should be code for 64 bit R to use long long or the like? On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves <[hidden email]> wrote: > > > On 2020-01-19 09:34, Benjamin Tyner wrote: > >> ------------------------------------------------------------------------ > >> Hello, All: > >> > >> > >>         Consider: > >> > >> > >> Browse[2]> set.seed(1) > >> Browse[2]> rpois(9, 1e10) > >> NAs produced[1] NA NA NA NA NA NA NA NA NA > >> > >> > >>         Should this happen? > >> > >> > >>         I think that for, say, lambda>1e6, rpois should return rnorm(., > >> lambda, sqrt(lambda)). > > But need to implement carefully; rpois should always return a > > non-negative integer, whereas rnorm always returns numeric... > > > >        Thanks for the reply. > > >        However, I think it's not acceptable to get an NA from a number > that cannot be expressed as an integer.  Whenever a randomly generated > number would exceed .Machine\$integer.max, the choice is between > returning NA or a non-integer numeric.  Consider: > > >  > 2*.Machine\$integer.max > [1] 4294967294 >  > as.integer(2*.Machine\$integer.max) > [1] NA > Warning message: > NAs introduced by coercion to integer range > > >        I'd rather have the non-integer numeric. > > >        Spencer > > ______________________________________________ > [hidden email] mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel> -- Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 So imagine rpois is changed, such that the storage mode of its return value is sometimes integer and sometimes numeric. Then imagine the case where lambda is itself a realization of a random variable. Do we really want the storage mode to inherit that randomness? On 1/19/20 10:47 AM, Avraham Adler wrote: > Maybe there should be code for 64 bit R to use long long or the like? > > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves > <[hidden email] > wrote: > > > >     On 2020-01-19 09:34, Benjamin Tyner wrote: >     >> >     ------------------------------------------------------------------------ >     >> Hello, All: >     >> >     >> >     >>         Consider: >     >> >     >> >     >> Browse[2]> set.seed(1) >     >> Browse[2]> rpois(9, 1e10) >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA >     >> >     >> >     >>         Should this happen? >     >> >     >> >     >>         I think that for, say, lambda>1e6, rpois should return >     rnorm(., >     >> lambda, sqrt(lambda)). >     > But need to implement carefully; rpois should always return a >     > non-negative integer, whereas rnorm always returns numeric... >     > > >            Thanks for the reply. > > >            However, I think it's not acceptable to get an NA from a >     number >     that cannot be expressed as an integer.  Whenever a randomly >     generated >     number would exceed .Machine\$integer.max, the choice is between >     returning NA or a non-integer numeric.  Consider: > > >      > 2*.Machine\$integer.max >     [1] 4294967294 >      > as.integer(2*.Machine\$integer.max) >     [1] NA >     Warning message: >     NAs introduced by coercion to integer range > > >            I'd rather have the non-integer numeric. > > >            Spencer > >     ______________________________________________ >     [hidden email] mailing list >     https://stat.ethz.ch/mailman/listinfo/r-devel> > -- > Sent from Gmail Mobile ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 Technically, lambda can always be numeric. It is the observations which must be integral. Would hitting everything larger than maxint or maxlonglong with floor or round fundamentally change the distribution? Well, yes, but enough that it would matter over process risk? Avi On Sun, Jan 19, 2020 at 11:20 AM Benjamin Tyner <[hidden email]> wrote: > So imagine rpois is changed, such that the storage mode of its return > value is sometimes integer and sometimes numeric. Then imagine the case > where lambda is itself a realization of a random variable. Do we really > want the storage mode to inherit that randomness? > > > On 1/19/20 10:47 AM, Avraham Adler wrote: > > Maybe there should be code for 64 bit R to use long long or the like? > > > > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves > > <[hidden email] > > wrote: > > > > > > > >     On 2020-01-19 09:34, Benjamin Tyner wrote: > >     >> > > >  ------------------------------------------------------------------------ > >     >> Hello, All: > >     >> > >     >> > >     >>         Consider: > >     >> > >     >> > >     >> Browse[2]> set.seed(1) > >     >> Browse[2]> rpois(9, 1e10) > >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA > >     >> > >     >> > >     >>         Should this happen? > >     >> > >     >> > >     >>         I think that for, say, lambda>1e6, rpois should return > >     rnorm(., > >     >> lambda, sqrt(lambda)). > >     > But need to implement carefully; rpois should always return a > >     > non-negative integer, whereas rnorm always returns numeric... > >     > > > > >            Thanks for the reply. > > > > > >            However, I think it's not acceptable to get an NA from a > >     number > >     that cannot be expressed as an integer.  Whenever a randomly > >     generated > >     number would exceed .Machine\$integer.max, the choice is between > >     returning NA or a non-integer numeric.  Consider: > > > > > >      > 2*.Machine\$integer.max > >     [1] 4294967294 > >      > as.integer(2*.Machine\$integer.max) > >     [1] NA > >     Warning message: > >     NAs introduced by coercion to integer range > > > > > >            I'd rather have the non-integer numeric. > > > > > >            Spencer > > > >     ______________________________________________ > >     [hidden email] mailing list > >     https://stat.ethz.ch/mailman/listinfo/r-devel> > > > -- > > Sent from Gmail Mobile > -- Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 This issue arose for me in simulations to estimate confidence, prediction, and tolerance intervals from glm(., family=poisson) fits embedded in a BMA::bic.glm fit using a simulate.bic.glm function I added to the development version of Ecfun, available at "https://github.com/sbgraves237/Ecfun".  This is part of a vignette I'm developing, available at "https://github.com/sbgraves237/Ecfun/blob/master/vignettes/time2nextNuclearWeaponState.Rmd". This includes a simulated mean of a mixture of Poissons that exceeds 2e22.  It doesn't seem unreasonable to me to have rpois output a numerics rather than integers when a number simulated exceeds .Machine\$integer.max.  And it does seem to make less sense in such cases to return NAs.         Alternatively, might it make sense to add another argument to rpois to give the user the choice?  E.g., an argument "bigOutput" with (I hope) default = "numeric" and "NA" as a second option.  Or NA is the default, so no code that relied that feature of the current code would be broken by the change.  If someone wanted to use arbitrary precision arithmetic, they could write their own version of this function with "arbitraryPrecision" as an optional value for the "bigOutput" argument.        Comments?        Thanks,        Spencer Graves On 2020-01-19 10:28, Avraham Adler wrote: > Technically, lambda can always be numeric. It is the observations > which must be integral. > > Would hitting everything larger than maxint or maxlonglong with floor > or round fundamentally change the distribution? Well, yes, but enough > that it would matter over process risk? > > Avi > > On Sun, Jan 19, 2020 at 11:20 AM Benjamin Tyner <[hidden email] > > wrote: > >     So imagine rpois is changed, such that the storage mode of its return >     value is sometimes integer and sometimes numeric. Then imagine the >     case >     where lambda is itself a realization of a random variable. Do we >     really >     want the storage mode to inherit that randomness? > > >     On 1/19/20 10:47 AM, Avraham Adler wrote: >     > Maybe there should be code for 64 bit R to use long long or the >     like? >     > >     > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves >     > <[hidden email] >     >         >> wrote: >     > >     > >     > >     >     On 2020-01-19 09:34, Benjamin Tyner wrote: >     >     >> >     > >      ------------------------------------------------------------------------ >     >     >> Hello, All: >     >     >> >     >     >> >     >     >>         Consider: >     >     >> >     >     >> >     >     >> Browse[2]> set.seed(1) >     >     >> Browse[2]> rpois(9, 1e10) >     >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA >     >     >> >     >     >> >     >     >>         Should this happen? >     >     >> >     >     >> >     >     >>         I think that for, say, lambda>1e6, rpois should >     return >     >     rnorm(., >     >     >> lambda, sqrt(lambda)). >     >     > But need to implement carefully; rpois should always return a >     >     > non-negative integer, whereas rnorm always returns numeric... >     >     > >     > >     >            Thanks for the reply. >     > >     > >     >            However, I think it's not acceptable to get an NA from a >     >     number >     >     that cannot be expressed as an integer.  Whenever a randomly >     >     generated >     >     number would exceed .Machine\$integer.max, the choice is between >     >     returning NA or a non-integer numeric.  Consider: >     > >     > >     >      > 2*.Machine\$integer.max >     >     [1] 4294967294 >     >      > as.integer(2*.Machine\$integer.max) >     >     [1] NA >     >     Warning message: >     >     NAs introduced by coercion to integer range >     > >     > >     >            I'd rather have the non-integer numeric. >     > >     > >     >            Spencer >     > >     >     ______________________________________________ >     > [hidden email] >     > >     mailing list >     > https://stat.ethz.ch/mailman/listinfo/r-devel>     > >     > -- >     > Sent from Gmail Mobile > > -- > Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 Crazy thought, but being that a sum of Poissons is Poisson in the sum, can you break your “big” simulation into the sum of a few smaller ones? Or is the order of magnitude difference just too great? On Sun, Jan 19, 2020 at 1:58 PM Spencer Graves <[hidden email]> wrote: >       This issue arose for me in simulations to estimate confidence, > prediction, and tolerance intervals from glm(., family=poisson) fits > embedded in a BMA::bic.glm fit using a simulate.bic.glm function I added to > the development version of Ecfun, available at > "https://github.com/sbgraves237/Ecfun" > .  This is part of a vignette I'm > developing, available at > "https://github.com/sbgraves237/Ecfun/blob/master/vignettes/time2nextNuclearWeaponState.Rmd" > . > This includes a simulated mean of a mixture of Poissons that exceeds 2e22. > It doesn't seem unreasonable to me to have rpois output a numerics rather > than integers when a number simulated exceeds .Machine\$integer.max.  And it > does seem to make less sense in such cases to return NAs. > > >        Alternatively, might it make sense to add another argument to rpois > to give the user the choice?  E.g., an argument "bigOutput" with (I hope) > default = "numeric" and "NA" as a second option.  Or NA is the default, so > no code that relied that feature of the current code would be broken by the > change.  If someone wanted to use arbitrary precision arithmetic, they > could write their own version of this function with "arbitraryPrecision" as > an optional value for the "bigOutput" argument. > > >       Comments? >       Thanks, >       Spencer Graves > > > > On 2020-01-19 10:28, Avraham Adler wrote: > > Technically, lambda can always be numeric. It is the observations which > must be integral. > > Would hitting everything larger than maxint or maxlonglong with floor or > round fundamentally change the distribution? Well, yes, but enough that it > would matter over process risk? > > Avi > > On Sun, Jan 19, 2020 at 11:20 AM Benjamin Tyner <[hidden email]> wrote: > >> So imagine rpois is changed, such that the storage mode of its return >> value is sometimes integer and sometimes numeric. Then imagine the case >> where lambda is itself a realization of a random variable. Do we really >> want the storage mode to inherit that randomness? >> >> >> On 1/19/20 10:47 AM, Avraham Adler wrote: >> > Maybe there should be code for 64 bit R to use long long or the like? >> > >> > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves >> > <[hidden email] > >> wrote: >> > >> > >> > >> >     On 2020-01-19 09:34, Benjamin Tyner wrote: >> >     >> >> > >>  ------------------------------------------------------------------------ >> >     >> Hello, All: >> >     >> >> >     >> >> >     >>         Consider: >> >     >> >> >     >> >> >     >> Browse[2]> set.seed(1) >> >     >> Browse[2]> rpois(9, 1e10) >> >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA >> >     >> >> >     >> >> >     >>         Should this happen? >> >     >> >> >     >> >> >     >>         I think that for, say, lambda>1e6, rpois should return >> >     rnorm(., >> >     >> lambda, sqrt(lambda)). >> >     > But need to implement carefully; rpois should always return a >> >     > non-negative integer, whereas rnorm always returns numeric... >> >     > >> > >> >            Thanks for the reply. >> > >> > >> >            However, I think it's not acceptable to get an NA from a >> >     number >> >     that cannot be expressed as an integer.  Whenever a randomly >> >     generated >> >     number would exceed .Machine\$integer.max, the choice is between >> >     returning NA or a non-integer numeric.  Consider: >> > >> > >> >      > 2*.Machine\$integer.max >> >     [1] 4294967294 >> >      > as.integer(2*.Machine\$integer.max) >> >     [1] NA >> >     Warning message: >> >     NAs introduced by coercion to integer range >> > >> > >> >            I'd rather have the non-integer numeric. >> > >> > >> >            Spencer >> > >> >     ______________________________________________ >> >     [hidden email] mailing list >> >     https://stat.ethz.ch/mailman/listinfo/r-devel>> > >> > -- >> > Sent from Gmail Mobile >> > -- > Sent from Gmail Mobile > > > -- Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 On 2020-01-19 13:01, Avraham Adler wrote: > Crazy thought, but being that a sum of Poissons is Poisson in the sum, > can you break your “big” simulation into the sum of a few smaller > ones? Or is the order of magnitude difference just too great?        I don't perceive that as feasible.  Once I found what was generating NAs, it was easy to code a function to return pseudo-random numbers using the standard normal approximation to the Poisson for those extreme cases.  [For a Poisson with mean = 1e6, for example, the skewness (third standardized moment) is 0.001.  At least for my purposes, that should be adequate.][1]        What are the negative consequences of having rpois return numerics that are always nonnegative?        Spencer [1]  In the code I reported before, I just changed the threshold of 1e6 to 0.5*.Machine\$integer.max.  On my Mac, .Machine\$integer.max = 2147483647 = 2^31 > 1e9.  That still means that a Poisson distributed pseudo-random number just under that would have to be over 23000 standard deviations above the mean to exceed .Machine\$integer.max. > > On Sun, Jan 19, 2020 at 1:58 PM Spencer Graves > <[hidden email] > wrote: > >           This issue arose for me in simulations to estimate >     confidence, prediction, and tolerance intervals from glm(., >     family=poisson) fits embedded in a BMA::bic.glm fit using a >     simulate.bic.glm function I added to the development version of >     Ecfun, available at "https://github.com/sbgraves237/Ecfun" >     . This is part of a vignette >     I'm developing, available at >     "https://github.com/sbgraves237/Ecfun/blob/master/vignettes/time2nextNuclearWeaponState.Rmd" >     . >     This includes a simulated mean of a mixture of Poissons that >     exceeds 2e22.  It doesn't seem unreasonable to me to have rpois >     output a numerics rather than integers when a number simulated >     exceeds .Machine\$integer.max.  And it does seem to make less sense >     in such cases to return NAs. > > >            Alternatively, might it make sense to add another argument >     to rpois to give the user the choice?  E.g., an argument >     "bigOutput" with (I hope) default = "numeric" and "NA" as a second >     option.  Or NA is the default, so no code that relied that feature >     of the current code would be broken by the change.  If someone >     wanted to use arbitrary precision arithmetic, they could write >     their own version of this function with "arbitraryPrecision" as an >     optional value for the "bigOutput" argument. > > >           Comments? >           Thanks, >           Spencer Graves > > > >     On 2020-01-19 10:28, Avraham Adler wrote: >>     Technically, lambda can always be numeric. It is the observations >>     which must be integral. >> >>     Would hitting everything larger than maxint or maxlonglong with >>     floor or round fundamentally change the distribution? Well, yes, >>     but enough that it would matter over process risk? >> >>     Avi >> >>     On Sun, Jan 19, 2020 at 11:20 AM Benjamin Tyner <[hidden email] >>     > wrote: >> >>         So imagine rpois is changed, such that the storage mode of >>         its return >>         value is sometimes integer and sometimes numeric. Then >>         imagine the case >>         where lambda is itself a realization of a random variable. Do >>         we really >>         want the storage mode to inherit that randomness? >> >> >>         On 1/19/20 10:47 AM, Avraham Adler wrote: >>         > Maybe there should be code for 64 bit R to use long long or >>         the like? >>         > >>         > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves >>         > <[hidden email] >>         >>         >         >> wrote: >>         > >>         > >>         > >>         >     On 2020-01-19 09:34, Benjamin Tyner wrote: >>         >     >> >>         > >>          ------------------------------------------------------------------------ >>         >     >> Hello, All: >>         >     >> >>         >     >> >>         >     >>         Consider: >>         >     >> >>         >     >> >>         >     >> Browse[2]> set.seed(1) >>         >     >> Browse[2]> rpois(9, 1e10) >>         >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA >>         >     >> >>         >     >> >>         >     >>         Should this happen? >>         >     >> >>         >     >> >>         >     >>         I think that for, say, lambda>1e6, rpois >>         should return >>         >     rnorm(., >>         >     >> lambda, sqrt(lambda)). >>         >     > But need to implement carefully; rpois should always >>         return a >>         >     > non-negative integer, whereas rnorm always returns >>         numeric... >>         >     > >>         > >>         >            Thanks for the reply. >>         > >>         > >>         >            However, I think it's not acceptable to get an >>         NA from a >>         >     number >>         >     that cannot be expressed as an integer. Whenever a randomly >>         >     generated >>         >     number would exceed .Machine\$integer.max, the choice is >>         between >>         >     returning NA or a non-integer numeric. Consider: >>         > >>         > >>         >      > 2*.Machine\$integer.max >>         >     [1] 4294967294 >>         >      > as.integer(2*.Machine\$integer.max) >>         >     [1] NA >>         >     Warning message: >>         >     NAs introduced by coercion to integer range >>         > >>         > >>         >            I'd rather have the non-integer numeric. >>         > >>         > >>         >            Spencer >>         > >>         >  ______________________________________________ >>         > [hidden email] >>         > >>         mailing list >>         > https://stat.ethz.ch/mailman/listinfo/r-devel>>         > >>         > -- >>         > Sent from Gmail Mobile >> >>     -- >>     Sent from Gmail Mobile > > -- > Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 Floor (maybe round) of non-negative numerics, though. Poisson should never have anything after decimal. Still think it’s worth allowing long long for R64 bit, just for purity sake. Avi On Sun, Jan 19, 2020 at 4:38 PM Spencer Graves <[hidden email]> wrote: > > > On 2020-01-19 13:01, Avraham Adler wrote: > > Crazy thought, but being that a sum of Poissons is Poisson in the sum, can > you break your “big” simulation into the sum of a few smaller ones? Or is > the order of magnitude difference just too great? > > > >       I don't perceive that as feasible.  Once I found what was generating > NAs, it was easy to code a function to return pseudo-random numbers using > the standard normal approximation to the Poisson for those extreme cases. > [For a Poisson with mean = 1e6, for example, the skewness (third > standardized moment) is 0.001.  At least for my purposes, that should be > adequate.][1] > > >       What are the negative consequences of having rpois return numerics > that are always nonnegative? > > >       Spencer > > > [1]  In the code I reported before, I just changed the threshold of 1e6 to > 0.5*.Machine\$integer.max.  On my Mac, .Machine\$integer.max = 2147483647 = > 2^31 > 1e9.  That still means that a Poisson distributed pseudo-random > number just under that would have to be over 23000 standard deviations > above the mean to exceed .Machine\$integer.max. > > > On Sun, Jan 19, 2020 at 1:58 PM Spencer Graves < > [hidden email]> wrote: > >>       This issue arose for me in simulations to estimate confidence, >> prediction, and tolerance intervals from glm(., family=poisson) fits >> embedded in a BMA::bic.glm fit using a simulate.bic.glm function I added to >> the development version of Ecfun, available at >> "https://github.com/sbgraves237/Ecfun" >> .  This is part of a vignette I'm >> developing, available at >> "https://github.com/sbgraves237/Ecfun/blob/master/vignettes/time2nextNuclearWeaponState.Rmd" >> . >> This includes a simulated mean of a mixture of Poissons that exceeds 2e22. >> It doesn't seem unreasonable to me to have rpois output a numerics rather >> than integers when a number simulated exceeds .Machine\$integer.max.  And it >> does seem to make less sense in such cases to return NAs. >> >> >>        Alternatively, might it make sense to add another argument to >> rpois to give the user the choice?  E.g., an argument "bigOutput" with (I >> hope) default = "numeric" and "NA" as a second option.  Or NA is the >> default, so no code that relied that feature of the current code would be >> broken by the change.  If someone wanted to use arbitrary precision >> arithmetic, they could write their own version of this function with >> "arbitraryPrecision" as an optional value for the "bigOutput" argument. >> >> >>       Comments? >>       Thanks, >>       Spencer Graves >> >> >> >> On 2020-01-19 10:28, Avraham Adler wrote: >> >> Technically, lambda can always be numeric. It is the observations which >> must be integral. >> >> Would hitting everything larger than maxint or maxlonglong with floor or >> round fundamentally change the distribution? Well, yes, but enough that it >> would matter over process risk? >> >> Avi >> >> On Sun, Jan 19, 2020 at 11:20 AM Benjamin Tyner <[hidden email]> wrote: >> >>> So imagine rpois is changed, such that the storage mode of its return >>> value is sometimes integer and sometimes numeric. Then imagine the case >>> where lambda is itself a realization of a random variable. Do we really >>> want the storage mode to inherit that randomness? >>> >>> >>> On 1/19/20 10:47 AM, Avraham Adler wrote: >>> > Maybe there should be code for 64 bit R to use long long or the like? >>> > >>> > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves >>> > <[hidden email] > >>> wrote: >>> > >>> > >>> > >>> >     On 2020-01-19 09:34, Benjamin Tyner wrote: >>> >     >> >>> > >>>  ------------------------------------------------------------------------ >>> >     >> Hello, All: >>> >     >> >>> >     >> >>> >     >>         Consider: >>> >     >> >>> >     >> >>> >     >> Browse[2]> set.seed(1) >>> >     >> Browse[2]> rpois(9, 1e10) >>> >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA >>> >     >> >>> >     >> >>> >     >>         Should this happen? >>> >     >> >>> >     >> >>> >     >>         I think that for, say, lambda>1e6, rpois should return >>> >     rnorm(., >>> >     >> lambda, sqrt(lambda)). >>> >     > But need to implement carefully; rpois should always return a >>> >     > non-negative integer, whereas rnorm always returns numeric... >>> >     > >>> > >>> >            Thanks for the reply. >>> > >>> > >>> >            However, I think it's not acceptable to get an NA from a >>> >     number >>> >     that cannot be expressed as an integer.  Whenever a randomly >>> >     generated >>> >     number would exceed .Machine\$integer.max, the choice is between >>> >     returning NA or a non-integer numeric.  Consider: >>> > >>> > >>> >      > 2*.Machine\$integer.max >>> >     [1] 4294967294 >>> >      > as.integer(2*.Machine\$integer.max) >>> >     [1] NA >>> >     Warning message: >>> >     NAs introduced by coercion to integer range >>> > >>> > >>> >            I'd rather have the non-integer numeric. >>> > >>> > >>> >            Spencer >>> > >>> >     ______________________________________________ >>> >     [hidden email] mailing list >>> >     https://stat.ethz.ch/mailman/listinfo/r-devel>>> > >>> > -- >>> > Sent from Gmail Mobile >>> >> -- >> Sent from Gmail Mobile >> >> >> -- > Sent from Gmail Mobile > > > -- Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: rpois(9, 1e10)

 On my Mac: str(.Machine) ... \$ integer.max          : int 2147483647   \$ sizeof.long          : int 8   \$ sizeof.longlong      : int 8   \$ sizeof.longdouble    : int 16   \$ sizeof.pointer       : int 8        On a Windows 10 machine I have, \$ sizeof.long : int 4; otherwise the same as on my Mac.        Am I correct that \$ sizeof.long = 4 means 4 bytes = 32 bits? log2(.Machine\$integer.max) = 31.  Then 8 bytes is what used to be called double precision (2 words of 4 bytes each)?  And \$ sizeof.longdouble = 16 = 4 words of 4 bytes each?        Spencer On 2020-01-19 15:41, Avraham Adler wrote: > Floor (maybe round) of non-negative numerics, though. Poisson should > never have anything after decimal. > > Still think it’s worth allowing long long for R64 bit, just for purity > sake. > > Avi > > On Sun, Jan 19, 2020 at 4:38 PM Spencer Graves > <[hidden email] > wrote: > > > >     On 2020-01-19 13:01, Avraham Adler wrote: >>     Crazy thought, but being that a sum of Poissons is Poisson in the >>     sum, can you break your “big” simulation into the sum of a few >>     smaller ones? Or is the order of magnitude difference just too great? > > >           I don't perceive that as feasible.  Once I found what was >     generating NAs, it was easy to code a function to return >     pseudo-random numbers using the standard normal approximation to >     the Poisson for those extreme cases.  [For a Poisson with mean = >     1e6, for example, the skewness (third standardized moment) is >     0.001.  At least for my purposes, that should be adequate.][1] > > >           What are the negative consequences of having rpois return >     numerics that are always nonnegative? > > >           Spencer > > >     [1]  In the code I reported before, I just changed the threshold >     of 1e6 to 0.5*.Machine\$integer.max.  On my Mac, >     .Machine\$integer.max = 2147483647 = 2^31 > 1e9. That still means >     that a Poisson distributed pseudo-random number just under that >     would have to be over 23000 standard deviations above the mean to >     exceed .Machine\$integer.max. > >> >>     On Sun, Jan 19, 2020 at 1:58 PM Spencer Graves >>     <[hidden email] >>     > wrote: >> >>               This issue arose for me in simulations to estimate >>         confidence, prediction, and tolerance intervals from glm(., >>         family=poisson) fits embedded in a BMA::bic.glm fit using a >>         simulate.bic.glm function I added to the development version >>         of Ecfun, available at "https://github.com/sbgraves237/Ecfun" >>         . This is part of a >>         vignette I'm developing, available at >>         "https://github.com/sbgraves237/Ecfun/blob/master/vignettes/time2nextNuclearWeaponState.Rmd" >>         . >>         This includes a simulated mean of a mixture of Poissons that >>         exceeds 2e22.  It doesn't seem unreasonable to me to have >>         rpois output a numerics rather than integers when a number >>         simulated exceeds .Machine\$integer.max.  And it does seem to >>         make less sense in such cases to return NAs. >> >> >>                Alternatively, might it make sense to add another >>         argument to rpois to give the user the choice?  E.g., an >>         argument "bigOutput" with (I hope) default = "numeric" and >>         "NA" as a second option.  Or NA is the default, so no code >>         that relied that feature of the current code would be broken >>         by the change.  If someone wanted to use arbitrary precision >>         arithmetic, they could write their own version of this >>         function with "arbitraryPrecision" as an optional value for >>         the "bigOutput" argument. >> >> >>               Comments? >>               Thanks, >>               Spencer Graves >> >> >> >>         On 2020-01-19 10:28, Avraham Adler wrote: >>>         Technically, lambda can always be numeric. It is the >>>         observations which must be integral. >>> >>>         Would hitting everything larger than maxint or maxlonglong >>>         with floor or round fundamentally change the distribution? >>>         Well, yes, but enough that it would matter over process risk? >>> >>>         Avi >>> >>>         On Sun, Jan 19, 2020 at 11:20 AM Benjamin Tyner >>>         <[hidden email] > wrote: >>> >>>             So imagine rpois is changed, such that the storage mode >>>             of its return >>>             value is sometimes integer and sometimes numeric. Then >>>             imagine the case >>>             where lambda is itself a realization of a random >>>             variable. Do we really >>>             want the storage mode to inherit that randomness? >>> >>> >>>             On 1/19/20 10:47 AM, Avraham Adler wrote: >>>             > Maybe there should be code for 64 bit R to use long >>>             long or the like? >>>             > >>>             > On Sun, Jan 19, 2020 at 10:45 AM Spencer Graves >>>             > <[hidden email] >>>             >>>             >>             >> wrote: >>>             > >>>             > >>>             > >>>             >     On 2020-01-19 09:34, Benjamin Tyner wrote: >>>             >     >> >>>             > >>>              ------------------------------------------------------------------------ >>>             >     >> Hello, All: >>>             >     >> >>>             >     >> >>>             >     >>         Consider: >>>             >     >> >>>             >     >> >>>             >     >> Browse[2]> set.seed(1) >>>             >     >> Browse[2]> rpois(9, 1e10) >>>             >     >> NAs produced[1] NA NA NA NA NA NA NA NA NA >>>             >     >> >>>             >     >> >>>             >     >>         Should this happen? >>>             >     >> >>>             >     >> >>>             >     >>         I think that for, say, lambda>1e6, >>>             rpois should return >>>             >     rnorm(., >>>             >     >> lambda, sqrt(lambda)). >>>             >     > But need to implement carefully; rpois should >>>             always return a >>>             >     > non-negative integer, whereas rnorm always >>>             returns numeric... >>>             >     > >>>             > >>>             >            Thanks for the reply. >>>             > >>>             > >>>             >            However, I think it's not acceptable to get >>>             an NA from a >>>             >     number >>>             >     that cannot be expressed as an integer.  Whenever >>>             a randomly >>>             >     generated >>>             >     number would exceed .Machine\$integer.max, the >>>             choice is between >>>             >     returning NA or a non-integer numeric.  Consider: >>>             > >>>             > >>>             >      > 2*.Machine\$integer.max >>>             >     [1] 4294967294 >>>             >      > as.integer(2*.Machine\$integer.max) >>>             >     [1] NA >>>             >     Warning message: >>>             >     NAs introduced by coercion to integer range >>>             > >>>             > >>>             >            I'd rather have the non-integer numeric. >>>             > >>>             > >>>             >            Spencer >>>             > >>>             >  ______________________________________________ >>>             > [hidden email] >>>             >>             > mailing list >>>             > https://stat.ethz.ch/mailman/listinfo/r-devel>>>             > >>>             > -- >>>             > Sent from Gmail Mobile >>> >>>         -- >>>         Sent from Gmail Mobile >> >>     -- >>     Sent from Gmail Mobile > > -- > Sent from Gmail Mobile         [[alternative HTML version deleted]] ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

 On 1/20/20 4:26 AM, Martin Maechler wrote: > Coming late here -- after enjoying a proper weekend ;-) -- > I have been agreeing (with Spencer, IIUC) on this for a long > time (~ 3 yrs, or more?), namely that I've come to see it as a > "design bug" that  rpois() {and similar} must return return typeof() "integer". > > More strongly, I'm actually pretty convinced they should return > (integer-valued) double instead of NA_integer_   and for that > reason should always return double: > Even if we have (hopefully) a native 64bit integer in R, > 2^64 is still teeny tiny compared .Machine\$double.max > > (and then maybe we'd have .Machine\$longdouble.max  which would >   be considerably larger than double.max unless on Windows, where >   the wise men at Microsoft decided to keep their workload simple >   by defining "long double := double" - as 'long double' >   unfortunately is not well defined by C standards) > > Martin > Martin if you are in favor, then certainly no objection from me! ;-) So now what about other discrete distributions e.g. could a similar enhancement apply here?  > rgeom(10L, 1e-10)   [1]         NA 1503061294         NA         NA 1122447583         NA   [7]         NA         NA         NA         NA Warning message: In rgeom(10L, 1e-10) : NAs produced ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

 >>>>> Benjamin Tyner >>>>>     on Mon, 20 Jan 2020 08:10:49 -0500 writes:     > On 1/20/20 4:26 AM, Martin Maechler wrote:     >> Coming late here -- after enjoying a proper weekend ;-) --     >> I have been agreeing (with Spencer, IIUC) on this for a long     >> time (~ 3 yrs, or more?), namely that I've come to see it as a     >> "design bug" that  rpois() {and similar} must return return typeof() "integer".     >>     >> More strongly, I'm actually pretty convinced they should return     >> (integer-valued) double instead of NA_integer_   and for that     >> reason should always return double:     >> Even if we have (hopefully) a native 64bit integer in R,     >> 2^64 is still teeny tiny compared .Machine\$double.max     >>     >> (and then maybe we'd have .Machine\$longdouble.max  which would     >> be considerably larger than double.max unless on Windows, where     >> the wise men at Microsoft decided to keep their workload simple     >> by defining "long double := double" - as 'long double'     >> unfortunately is not well defined by C standards)     >>     >> Martin     >>     > Martin if you are in favor, then certainly no objection from me! ;-)     > So now what about other discrete distributions e.g. could a similar     > enhancement apply here?     >> rgeom(10L, 1e-10)     >  [1]         NA 1503061294         NA         NA 1122447583         NA     >  [7]         NA         NA         NA         NA     > Warning message:     > In rgeom(10L, 1e-10) : NAs produced yes, of course there are several such distributions. It's really something that should be discussed (possibly not here, .. but then I've started it here ...). The  NEWS  for R 3.0.0 contain (in NEW FEATURES) :     * Functions rbinom(), rgeom(), rhyper(), rpois(), rnbinom(),       rsignrank() and rwilcox() now return integer (not double)       vectors.  This halves the storage requirements for large       simulations. and what I've been suggesting is to revert this change (svn rev r60225-6) which was purposefully and diligently done by a fellow R core member, so indeed must be debatable. Martin ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

 Ugh, sounds like competing priorities.   * maintain type consistency   * minimize storage (= current version, since 3.0.0)   * maximize utility for large lambda (= proposed change)   * keep user interface, and code, simple (e.g., it would be easy enough to add a switch that provided user control of int vs double return value)   * backward compatibility On 2020-01-20 12:33 p.m., Martin Maechler wrote: >>>>>> Benjamin Tyner >>>>>>     on Mon, 20 Jan 2020 08:10:49 -0500 writes: > >     > On 1/20/20 4:26 AM, Martin Maechler wrote: >     >> Coming late here -- after enjoying a proper weekend ;-) -- >     >> I have been agreeing (with Spencer, IIUC) on this for a long >     >> time (~ 3 yrs, or more?), namely that I've come to see it as a >     >> "design bug" that  rpois() {and similar} must return return typeof() "integer". >     >> >     >> More strongly, I'm actually pretty convinced they should return >     >> (integer-valued) double instead of NA_integer_   and for that >     >> reason should always return double: >     >> Even if we have (hopefully) a native 64bit integer in R, >     >> 2^64 is still teeny tiny compared .Machine\$double.max >     >> >     >> (and then maybe we'd have .Machine\$longdouble.max  which would >     >> be considerably larger than double.max unless on Windows, where >     >> the wise men at Microsoft decided to keep their workload simple >     >> by defining "long double := double" - as 'long double' >     >> unfortunately is not well defined by C standards) >     >> >     >> Martin >     >> >     > Martin if you are in favor, then certainly no objection from me! ;-) > >     > So now what about other discrete distributions e.g. could a similar >     > enhancement apply here? > > >     >> rgeom(10L, 1e-10) >     >  [1]         NA 1503061294         NA         NA 1122447583         NA >     >  [7]         NA         NA         NA         NA >     > Warning message: >     > In rgeom(10L, 1e-10) : NAs produced > > yes, of course there are several such distributions. > > It's really something that should be discussed (possibly not > here, .. but then I've started it here ...). > > The  NEWS  for R 3.0.0 contain (in NEW FEATURES) : > >     * Functions rbinom(), rgeom(), rhyper(), rpois(), rnbinom(), >       rsignrank() and rwilcox() now return integer (not double) >       vectors.  This halves the storage requirements for large >       simulations. > > and what I've been suggesting is to revert this change > (svn rev r60225-6) which was purposefully and diligently done by > a fellow R core member, so indeed must be debatable. > > Martin > > ______________________________________________ > [hidden email] mailing list > https://stat.ethz.ch/mailman/listinfo/r-devel> ______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

 >>>>> Ben Bolker >>>>>     on Mon, 20 Jan 2020 12:54:52 -0500 writes:     > Ugh, sounds like competing priorities. indeed.     > * maintain type consistency     > * minimize storage (= current version, since 3.0.0)     > * maximize utility for large lambda (= proposed change)     > * keep user interface, and code, simple (e.g., it would be easy enough     >   to add a switch that provided user control of int vs double return value)     > * backward compatibility Last night, it came to my mind that we should do what we have been doing in quite a few places in R, the last couple of years:   Return integer when possible, and switch to return double when   integers don't fit. We've been doing so even for  1:N  (well, now with additional ALTREP wrapper), seq(), and even the fundamental  length()  function. So I sat down and implemented it .. and it seemed to work perfectly:  Returning the same random numbers as now, but switching to use double (instead of returning NAs) when the values are too large. I'll probably commit that to R-devel quite soonish. Martin     > On 2020-01-20 12:33 p.m., Martin Maechler wrote:     >>>>>>> Benjamin Tyner     >>>>>>> on Mon, 20 Jan 2020 08:10:49 -0500 writes:     >>     >> > On 1/20/20 4:26 AM, Martin Maechler wrote:     >> >> Coming late here -- after enjoying a proper weekend ;-) --     >> >> I have been agreeing (with Spencer, IIUC) on this for a long     >> >> time (~ 3 yrs, or more?), namely that I've come to see it as a     >> >> "design bug" that  rpois() {and similar} must return return typeof() "integer".     >> >>     >> >> More strongly, I'm actually pretty convinced they should return     >> >> (integer-valued) double instead of NA_integer_   and for that     >> >> reason should always return double:     >> >> Even if we have (hopefully) a native 64bit integer in R,     >> >> 2^64 is still teeny tiny compared .Machine\$double.max     >> >>     >> >> (and then maybe we'd have .Machine\$longdouble.max  which would     >> >> be considerably larger than double.max unless on Windows, where     >> >> the wise men at Microsoft decided to keep their workload simple     >> >> by defining "long double := double" - as 'long double'     >> >> unfortunately is not well defined by C standards)     >> >>     >> >> Martin     >> >>     >> > Martin if you are in favor, then certainly no objection from me! ;-)     >>     >> > So now what about other discrete distributions e.g. could a similar     >> > enhancement apply here?     >>     >>     >> >> rgeom(10L, 1e-10)     >> >  [1]         NA 1503061294         NA         NA 1122447583         NA     >> >  [7]         NA         NA         NA         NA     >> > Warning message:     >> > In rgeom(10L, 1e-10) : NAs produced     >>     >> yes, of course there are several such distributions.     >>     >> It's really something that should be discussed (possibly not     >> here, .. but then I've started it here ...).     >>     >> The  NEWS  for R 3.0.0 contain (in NEW FEATURES) :     >>     >> * Functions rbinom(), rgeom(), rhyper(), rpois(), rnbinom(),     >> rsignrank() and rwilcox() now return integer (not double)     >> vectors.  This halves the storage requirements for large     >> simulations.     >>     >> and what I've been suggesting is to revert this change     >> (svn rev r60225-6) which was purposefully and diligently done by     >> a fellow R core member, so indeed must be debatable.     >>     >> Martin     >>     >> ______________________________________________     >> [hidden email] mailing list     >> https://stat.ethz.ch/mailman/listinfo/r-devel    >>     > ______________________________________________     > [hidden email] mailing list     > https://stat.ethz.ch/mailman/listinfo/r-devel______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel
Open this post in threaded view
|

## Re: [External] Re: rpois(9, 1e10)

 >>>>> Martin Maechler >>>>>     on Tue, 21 Jan 2020 09:25:19 +0100 writes: >>>>> Ben Bolker >>>>>     on Mon, 20 Jan 2020 12:54:52 -0500 writes:     >> Ugh, sounds like competing priorities.     > indeed.     >> * maintain type consistency     >> * minimize storage (= current version, since 3.0.0)     >> * maximize utility for large lambda (= proposed change)     >> * keep user interface, and code, simple (e.g., it would be easy enough     >> to add a switch that provided user control of int vs double return value)     >> * backward compatibility     > Last night, it came to my mind that we should do what we have     > been doing in quite a few places in R, the last couple of years:     > Return integer when possible, and switch to return double when     > integers don't fit.     > We've been doing so even for  1:N  (well, now with additional ALTREP wrapper),     > seq(), and even the fundamental  length()  function.     > So I sat down and implemented it .. and it seemed to work     > perfectly:  Returning the same random numbers as now, but     > switching to use double (instead of returning NAs) when the     > values are too large.     > I'll probably commit that to R-devel quite soonish.     > Martin Committed in svn rev 77690; this is really very advantageous, as in some cases / applications or even just limit cases, you'd easily get into overflow sitations. The new R 4.0.0 behavior is IMO  "the best of" being memory efficient (integer storage) in most cases (back compatible to R 3.x.x) and returning desired random numbers in large cases (compatible to R <= 2.x.x). Martin     >> On 2020-01-20 12:33 p.m., Martin Maechler wrote:     >>>>>>>> Benjamin Tyner     >>>>>>>> on Mon, 20 Jan 2020 08:10:49 -0500 writes:     >>>     >>> > On 1/20/20 4:26 AM, Martin Maechler wrote:     >>> >> Coming late here -- after enjoying a proper weekend ;-) --     >>> >> I have been agreeing (with Spencer, IIUC) on this for a long     >>> >> time (~ 3 yrs, or more?), namely that I've come to see it as a     >>> >> "design bug" that  rpois() {and similar} must return return typeof() "integer".     >>> >>     >>> >> More strongly, I'm actually pretty convinced they should return     >>> >> (integer-valued) double instead of NA_integer_   and for that     >>> >> reason should always return double:     >>> >> Even if we have (hopefully) a native 64bit integer in R,     >>> >> 2^64 is still teeny tiny compared .Machine\$double.max     >>> >>     >>> >> (and then maybe we'd have .Machine\$longdouble.max  which would     >>> >> be considerably larger than double.max unless on Windows, where     >>> >> the wise men at Microsoft decided to keep their workload simple     >>> >> by defining "long double := double" - as 'long double'     >>> >> unfortunately is not well defined by C standards)     >>> >>     >>> >> Martin     >>> >>     >>> > Martin if you are in favor, then certainly no objection from me! ;-)     >>>     >>> > So now what about other discrete distributions e.g. could a similar     >>> > enhancement apply here?     >>>     >>>     >>> >> rgeom(10L, 1e-10)     >>> >  [1]         NA 1503061294         NA         NA 1122447583         NA     >>> >  [7]         NA         NA         NA         NA     >>> > Warning message:     >>> > In rgeom(10L, 1e-10) : NAs produced     >>>     >>> yes, of course there are several such distributions.     >>>     >>> It's really something that should be discussed (possibly not     >>> here, .. but then I've started it here ...).     >>>     >>> The  NEWS  for R 3.0.0 contain (in NEW FEATURES) :     >>>     >>> * Functions rbinom(), rgeom(), rhyper(), rpois(), rnbinom(),     >>> rsignrank() and rwilcox() now return integer (not double)     >>> vectors.  This halves the storage requirements for large     >>> simulations.     >>>     >>> and what I've been suggesting is to revert this change     >>> (svn rev r60225-6) which was purposefully and diligently done by     >>> a fellow R core member, so indeed must be debatable.     >>>     >>> Martin     >>>     >>> ______________________________________________     >>> [hidden email] mailing list     >>> https://stat.ethz.ch/mailman/listinfo/r-devel    >>>     >> ______________________________________________     >> [hidden email] mailing list     >> https://stat.ethz.ch/mailman/listinfo/r-devel    > ______________________________________________     > [hidden email] mailing list     > https://stat.ethz.ch/mailman/listinfo/r-devel______________________________________________ [hidden email] mailing list https://stat.ethz.ch/mailman/listinfo/r-devel